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~ ~{~notiier Look at the Longley

__ Data Set0

- Abstract A
This paper considers a linear regression problem invol ving

economic data used by Longley~’~~I>~n a study of the performance of
regression programs. The data set is notoriously diffi cult to handl e
computatlonally. In this paper, the singular value decomposition and
the QR factorization are used to show that very smal l perturbations in
the data render It colinear , thus accounting for the computational dif—
ficuitles . Another analysis, based on coefficients that bound pertur-
batlons in the regression coefficients in terms of perturbations in the
columns of the data , also shows the extreme sensitivity of the problem.
An analysis Is also even of a perturbation Index , introduced by Beaton,
Rubin , and Barone~ 1iT~to measure the sensitivity of regression problems.
It Is shown that the index Is valid only for extremely large sampl e sizes
and Is not appl icable to the Longley data set.
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1. Introduction

In a study of programs for solving regression problems , Longley

[5) introduced a set of economic data on which several programs failed

to compute acceptably accurate regression coefficients. Recently Beaton,

Rubin , and Barone [i, hereafter referred to as BRBT~ showed that the re-I
gression coefficients are more affected by errors in the data itself

than by rounding errors due to any reasonable computational scheme. In

suninary, they made the conservative assumption that the data was accurate

In all reported figures and Introduced pseudo—random perturbations uni-

formly distributed between .5 and 4.999 In the first unreported digit ,

so that the perturbed data rounded back to the original at the assumed

number of significant digits. One thousand such data sets were generated,

and regression coefficients were computed for each set, care being taken

that rounding errors In the computation had negligible effects.

Each regression coefficient was found to vary In both sign and

magnitude over the perturbed data sets. Moreover , the medi ans of the

coefficients were not near the corresponding coefficients of the original

problem, In spite of the fact that the perturbations In the data were

syninetric. To explain this phenomena, a limiting solution, va l id  for

large n umbers of observations , was der ived , along with a “perturbation

Index ”, which perportedly measures the sensitivity of the regression

~~ ~~~~~~~~~~~~~~~~~~ 
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coefficients to errors in the data. Beaton, Rubin , and Barone conclude

that “the use of stable algorithms and high precision is not likely to

yield a val id answer without more accurate data ” and that the perturbation

Index should “be used routinely to indicate the existance of severe insta-

bilIties in regression solutions. ”

The author agrees wholeheartedly with the first of these conclu-

sions — -  especial ly with the impl ication that what seem to be numerical S

problems may instead be symptoms of more fundamental statistical diffi-

culties. However, there are easier ways to see that the Longley data

set Is a hard case than performing a large simulation experiment. One

of the purposes of this paper Is to present three ways, two of which

provide a plausible explanation for the behavior of the medians of the

regression coefficients. Specifical ly, we shal l show that there are

data sets with exact colinearities within the domain of perturbations

considered by BRB. Moreover, we shal l give reasons for believing that

the perturbations introduced by BRB actually tend to make the problem

better behaved, this bias accounting for the bias in the coefficients.

The third approach is to compute numbers that measure how sensi-

tive the Individual regression coefficients are to perturbations in the

individual variables of the data set. These sensitivity coefficients

ininediately show that no accuracy can be expected In the regression coef-.

flcients In the presence of perturbations of the size considered by BRB.

The results of the sensitivity analysis are at variance with what

the perturbat Ion index implies about the coefficients. Accordingly, a

section of this paper is devoted to an analysis of the asymptotic properties

- 1~i .  -
~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~
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of the perturbation index, in which it is shown that it is a valid

measure of sensitivity only when the number of observations is very

large .

It will sometime s be convenient to cast the resul ts of thi s

paper in the language of norms . We shal l use the vector 2-norm defined

for any vector x by

li x Il =

For any matrix X we shal l use either the Frobenius norm defined by

2 1/ 2
l I X

~F = (E~~~x~~)

or the spectral norm defined by

11Xi12 = sup ~X x li
Kxft=1

The appea rence of UXU without a subscript in any statement means that

the statement holds for either the Frobenius or the spectral norms . For

a review of the properties of these norms see [6)

I woul d like to thank Kathy Schmidt for her prograniiiing and corn-
• putational help and David Hoaglin for his conmients on a preliminary version

of this paper.

2. The Longley data set

We consider the usual regression model

y B 0i + X 8 + e

- 
. .
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where 1 = (1,1,~•~,1)
T and X is a 16x6 matrix. The columns x1,... ,x6

of X contain observations of six independent variables , and the vector

y contains observations of the dependent varIable. Table 1 contaIns

these observatlons*, along with the regression coefficients ~~~~~~ .)86
(for further derived data, such as means , correlations , etc., see [i 1 ). -

We shal l follow BRB in regarding this data as fixed and consider-

• . ing the effects of perturbations on the regression coefficients. Unless

otherwise stated, the perturbations will be restricted to the interval

[ — .5, .5] so that any perturbed data set rounds back to the original .

This restriction is very conservative, since it is unl ikely that any of

the variables x1,x2,.. . ,x5 are known to more than three figures .

We shal l have occasion to work with the adjusted matrix Xa ob-

• tam ed from X by subtracting colunti means ; i.e.

X a X a l m

where

I i~
TX

m = 16

Since the adjustment of X Is by an additive factor, a perturbation in

X corresponds to an identical perturbation in Xa• However, if we per-

turb Xa to get 
~a 

and form ~ ~ 
+ lmT, the resulting X adjusts

back to 
~a 

if and only if

* For the variable x1 we have reported the original data times ten,

so that the perturbations defined below will have uniform ranges and
• variances.
I )

_ _ _  

• _
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(2.1) ~
Tj
a = O~

Thus if we wish to induce perturbations in X by perturbing Xa we
• must take care that (2.1) is satisf ied. This point will prove important

In the next two sections.

3. Singular value analysis

It is wel l known (e.g. see [6] ) that for any nxp matrix X

with n>p, there are orthogonal matrices U and V such that

T M
(3.1) IJ XV =

where

• M = diag(p1,~.i21...,p~)

I
and

p
1 ~ p2 �..  .

~~ 
~~~ � O•

The decomposition (3.1) is cal led the singular value decomposition of

X. The numbers ~~~~~~~~~ are the singular values of X and the

• columns of U and V are respectively the left and right singular vec- 
•

tors of X. If U is partitioned In the form

U = (U 1,U2)

where U1 Is nxp then

(3.2) X U1MVT ,

St
~ 

- - •
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an expression which is sometimes called the singular value factorization

of X .

The singular value decomposition has an important approximation

property. Given the integer k~p, let

• 
= diag(p 1,. ‘~k’

0’” ,O),

and let

(3.3) X = U1MVT.

Then X has rank less than or equal to k, and for any nxp matrix V
of rank less than or equal to k

lix - X112 ox - vil~ .

Thus ~ is a matri x of rank less than or equal to k that is nearest

to X in the leas t squares sense , and X is eas ily computable from the

singular value factorization of X .

This method of obtaining nearby matri ces with colinearities may

be applied to the Longley data set. If we compute the singular value

decomposition of the matrix Xa for the Longley data set (the LINPACK

code SSVDC was used ~33 ), we get the following sequence of singular

values , rounded to two places :

(3.4) 3.9~1O~, 4.7.1O~, ~~~~ 1.3~1O~, 3.7.10
1, 6.7.10 1.

• The smallest singular val ue Is near the error range described In §2.

• Accordingly, we set it to zero and compute Xa in analogy with (3.3) as

‘.~~~~

. 

~~~
.-.
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~? 1
(3.5) 

~a 
= U1~V

T

and then form

= 

~a 
+ jniT .

In order for this process to be legiti mate, the condition (2.1)

must be satisfied , so that the adjusted X is the rank defficient matri x

S ince M is nons ingular, it follows from (3.2), with X replaced by

X thata U1 
= X~VM~’

• Since 
~
TXa 

= 0, it follows that iTU1 
= 0 and

~
T
~a 

= 1Tu~ vT 0,

which Is just the condition (2.1).

The first and sixth columns of X are reproduced to eight figures

In Table 2 (the deviations of the other col umns were below the level of

roundng error). The largest deviation from X occurs in the year 1951

and has a value of 0.4196. Thus the perturbations are wel l within the

range described In Section 2. It follows that, for all one knows, the

“true” val ues of the Longley data set could harbor an exact colineari ty.

In particular, withIn the domain of matrices treated by BRB , there are

points where the regression coefficients fail to exist, and near these

points the coefficients can become arbitrarily large. Under the circum-

• stances, It Is not surprising that the coeffici ents behave erratically.

However, we believe that the shifting of the centers of the coef-

ficients observed by BRB Is due to the surprising fact that the pertur-

batlons tend to move the problem away from the singularities just mentioned.

T ~



T I
2. Rank Deficient Approximations to X

SVO QR
xl x6 x6

-

~ 829.99998 1946.9943 1946.9942

8b5~0G009 1948.0257 1948.0257
881.99992 1948.9759 1948.9759
894.99996 1949.9891 1949.9891
962.00146 1951.4196 1951.4196
981.00058 1952.1662 1952.1662
989.99931 1952.8004 1952.8004
999.99956 1953.8733 1953.8733

t 1011.9999 1954.9580 1954.9580
1045.9991 1955.7386 1955.7386
1083.9991 1956.7529 1956.7529
1107.9999 1957.9848 1957.9848
1126.0004 1959.1098 1959.1098

• 1141.9998 1959.9358 1959.9358

• 1157.0004 1961.1113 1961.1113
1169.0006 1962.1646 1962.1646

-J
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To see how this may happen , we must look at the effects of perturbations

in a matri x X on its smal lest s ingular value . Let X = X + E, where
I

we assume that the elements of E are uncorrelated with mean zero and

common variance ~~ From (3.2) it is easy to see that the eigenvalues

of XTX are ii~ ,4,... ,p~ with corres ponding eigenvec tors v1,v2,... ~~~
where v~ is the j-th column of V. It follows that the square of

the smallest singular value of X is the smallest eigenvalue of

(x + E) T(X + E) = xTx + XTE + ETx + ETE.

The first order approximation to is given by v~(X + E) T(x + E)v~
(e.g. see [.6] ). If we use the facts that Xv~ = ~~~ and XTu~ =

then

v~X
rXv~ + v~X

TEv~ + v~E
Txv~ + v~E

TUUTEv~

= p2 
+ 2ii~,u~Ev~, + 

~~(uTEv p)(ujEvp)

(3.6)
= + 2u~ u~Ev~ + (u~Ev~)

2 +

i~p
T ‘.2 2

= + U~LV~) + T

where

2 n I ~2T = Ej ...i(u~
EV

~
)

i~p

From the di stributional assumptions on E and the orthononnality

of the ui and the vj it follows that

1
• . 

~~~

•

• _ _ _ _
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(3 .7) E( T 2) (n— 1)a 2 .

Thus (3.6) partitions the fIrst order approximation to p~ into two

terms, one the square of a term deviating from p~ by a quantity with

standard deviation a and the other a sum of squares with mean (n-1)a 2.

As long as Is suffi ciently larger than a , the fluctuat ions in

are almost entirely due to the first term. But as ~ approaches a ,

the second term w ill dominate, and tend to increase the value of p

To sumarize this informal argument: if the elements of a matrix X ~~
perturbed ~~ guantities nearly eoual to Its smallest singular value, the

perturbations will tend to increase that singular value.

In the case of the BRB experiments, we have a2 
= 1/12 and

.45. From (3.7) it follows that

E(t 2 ) = 1.25.

Thus the term dominates , and the effect of the perturbations is for

the most part to produce a better behaved problem with 
~6 increased .

We bel ieve that this bias toward ni cer problems is the cause of the bi as

in the perturbed coefficients observed by BRB.

In the foregoing we have taken care to scale the columns of X

• so that the presumed uncertainties in the data are all equal . This has

the effect of making the singular values readily interpretable In terms

of the matrix X; the suppression of a singular value less than the Un-

certalntity will cause the elements of X to be perturbed by quantities

of the same magnitude. On the other hand , If the variables were scaled

r. ~~
-
~~

- 
- •
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so that the uncertainties were disparate , the supp ression of a small

singular val ue could overwhelm a still smaller uncertainty in a partic-

ular column . We mention thi s point because it is a common practice to

scale Xa so that its column s have norm one (in which case the columns

of V are the principal components of the problem). Whatever the merits

of th is app roach in other c i rcumstances , it is clearly not the thing to

do here.

4. Analysis via the QR decomposition

A comparison of Table 2 with Table 1 shows that the perturbations

introduced by the singular val ue analysis occur mostly in the time vari-

able x6. This suggests the possibility of obtaining a singular pertur-

bation of X by changing only the sixth column . In this section we shall

show how the QR decomposition may be used to find such a perturbation.

Given any nxp matrix X with n~p, there is an orthogonal matrix

Q such that

IR
(4.1) QTX =

where R is upper triangular (e.g. see (6] ). This decomposition of

X is called the Q~ 
decomposition. If we write Q = (Q1,Q2), where Q1 

•

is nxp, then It follows from (4.1) that

(4.2) X = Q1R,

and (4.2) is called the Q~ 
factorizatlon of X.
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The QR decomposition is a useful computational and theoretical

• tool in linear regression ; however, for our purposes we need only the

following approximation theorem, which appears to be new.

Theorem 3.1. In the QR decomposition (4.1), suppose that R is
nonsingular. Let R be obtained from R by setting ~~ = 0, and let

(4.3) X = Q1R.

Then X differs from X only in its p-th column , and rank(X) = p-i.

Moreover , if V is an nxp matrix that differs from X only in its

p— th column and satisfies rank(Y) s p-i, then

(4.4) lix - ~ II ~ lix - VII

Proof. By construction R and R differ only in their (p,p) -

elements . Hence, X and X differ only in their p-th columns. Moreover,

R is of rank p-i , and therefore so is ~.

To establish (4.4), let R be partitioned in the form

R’ r -

R =
0

where R’ is of order p-i. Let y~ denote the p-th column of Y , and

partition z = in the form

Z
i \z=  z2
z3

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where z1 is a (p—i)-vector and z2 is a scalar. Then
I

R1 r
QTX ... o 0

O 0

and

R’ 21
$ 

• QTY =  0 z2
0

It follows that

(4.5) tix - X1I2 =

Now for V to have rank p-I, the quantities 22 and z3 must be zero.

Hence

(4.6) l I X- Vll 2 = I t r - z 1II
2 + r~~~.

The inequality (4.4) follows from (4.5) and (4.6).

• 
The appl ication of this theorem to the Longley data set Is similar

to the singular val ue analysis. The QR decomposition of the matrix Xa
was computed by the U NPACK routine SQRDC t. 3) . The element

r66 = 0.6693051

of R was set to zero to give ~ and Xa computed in analogy with (4.3)

as

X = Q Ra I

- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
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An argument similar to the one in the last section establishes that
I

1TQ = 0. Hence X satisfies (2.1), and we may add means as usual to

get X. The sixth column of X , which Is the only one that has been al-

tered, has been appended to Table 2. The largest deviate corresponds

to the year 1951 and has a value of 1951.420, so that X again lies

t within the range of perturbations considered by BRB.

• We observed in connection with the singular value decomposition

that perturbations could tend to make a problem better behaved. Much

the same thing can occur with errors Introduced into a single col umn.

Specifically, let X have the QR decomposition (4.1) and let ~ be
obtained from x by adding to x~ a vect~ir e whose elements are Un-

correlated with mean zero and common variance a2. Let f = QTe Then

If we partition f in the form

I
fp f3

where f1 is a (p-1)-vector and f2 Is a scalar , we have in the nota-

• tion used above,

R’ r + f 1
- QTX = 0 r~ +f2

0 f3

It follows that the (p,p)-element of R satisfies

- 2
~~ = r~~ + f2~ + f3

-~~ 

h ‘
~~~ 

J1~~
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and

E(IIf3U
2) = (n-p)a 2

If ~~ is near a in magnitude , the term flf3(1
2 w ill tend to dominate

and increase ~~~

For perturbations in the variable x6 of the Longley data set we
have

(n-p)a 2 = 
~~~~

= .83

which clearly dominates ~~ = .45. Al though this analysis does not

strictly apply to the perturbations considered by BRB , s ince it assumes

the other variables are not perturbed , it none the less g ives a fair

indication of what is going on. In ten simulations , done by the author

for other purposes , it was observed that the average value of ~~ was
1.2, which Is in fair agreement with expectation 1.37 of in (4.7).

For this data set, the QR decomposition yields much the same results

as the singular value deco:npositlon. However, this is in part due to

the fortuitous ordering of the vari abl e x6; another ordering of the

columns could give different results. In general , It may be necessary
to inspect ~~ for different orderings. There is no need to examine

all 2p—1 orderings, since the value of ~~ depends only on the van —

able that Is placed last and not on the ordering of the other variables.

Efficient algorithms exist to determine these p di fferent values of

~~ after R has been computed once for a specific ordering t3, Ch.101

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~r: ~ _ _ _
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5. Sensitivity coefficients 
-

I, “
~ The results of the last two sections suggest that the regression

coefficients for the Lon gley da ta set wi ll be extremely sens iti ve to

perturbations in the variable x6 and , to a lesser exten t, in the van-

able x . For sufficiently smal l perturbations, we can make this pre-
- 1

cise by computing linear approximations to the perturbations In the

• regression coefficients. In this section we shall summarize the results

of such an approach. The reader will find details in (.41 or l18~
In a general regression model with regression matrix X, assume

that S is of full  ran k so that the vector of l east squares coefficients

is given by

• (5.1) = (XTX)~~X
Ty = CXTy x~y

where for later use we have set

C =

and

x~ = (x~xY 1x~
• ( X~ is the pseudo—inverse of X ). From (5.1) it is evident that if

X is restricted to a sufficiently small neighborhood of X, then
• 

. ~ty is a differentiable function of L In particular, if we write

as a function of the j-th column of ~~, say

— f1~(i,•1) ,

- -

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ - -~~~ ~:
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then can be expressed in the form

(5.2) = + ~~~~~~~ - x~) + O(iI~~ 
- x~tI2)

where the row vector f~~(x~) is the gradient of f~ evalua ted at
x
3
. It turns out that there is an easy expression for f~~(x~) and its

norm y
~~.

Theorem 4.1 4,8 . Let ~~~ denote the i-th row of X 1 , and
let

r = y - X8

Then

• 
f~~(x~) = 

i)~ Cf

and

Ii f~~(x~)I2 = 8~c11 + ~rt% 2C~ •

There are two ways in which this theorem can be applied . In the

first place , It follows from (5.2) that

— 
~ 

- x
311 + O(~i~ — xj~l

2) . •

Thus if we can place a bound on the size of the perturbation - x~ •

In Xj  and the perturbation Is sufficiently small*, then Ii Xj - x
iii

*This will be true if *.X1$I %I x~ 
— x~l$ is signifi cantly less than one,

say less than 0.2, a result which can be derived from theorems In [7.] .
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estimates the perturbation in due to the perturbation In X
j.

For this reason we shall call a sensitivity coefficient.

A second approach is to make distributional assumptions about

the componen ts of - x,~, say that they are independently distributed

S 
with means zero and common variances a2. Then the variance of the ap—

proximation

(5.2) = + f(x~)(~~ - x~)

is .
~ja

2
~ so that again estimates the vari ability of due to

perturbations in x~. However, some care is required here. If the dis-

tribution of — x~ is continuous and nonzero at a singulari ty of X ,

then we cannot guarantee that the moments of exist. This will always

be the case i f — x
3 is normally distributed. Intuition suggests

that if ~
2 is small enough then will accurately approximate 

~
except in a region of low probability , so that ~~~~ will adequately

describe the vari ability of j~; however, this area needs further study

The sensitivity coefficients can easily be computed from quant~t~es

normal ly generated in the course of solving regression problems. We have

done this for the matrix Xa obtained from the Longley data set and the

adjusted vector 
~a 

y - (1T~)1116~ Since the regression coefficients

differ widely in magnitude, we report ‘r~~/ ~ 
In Table 3. These

scaled coefficients measure the sensitivity of the relative error
• 

- BjI/I 8~% ; If this error if less than 10~ then and

agree to about - S signifi cant figures.

1~~ — 
S.- ’. ~~~~ ~~~ 

-
~~~ 

_4,I~ __________

—
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3. RelatIve sensitive coefficients

1 2 
—__

3 4 5 6

1 47.1O~
1 1.4~10~~ 4.0.10-2 2.0.1O

_2 
8.3~i0~~ 3.4.101

2 5.1.10 2 3.3~1O~~ 7.5 10~~ 3.3 10~~ i.7~i0~
3 6.5~i0

3

3 i.i.iü 2 8.1~10~~ 2.0~i0~~ 8.8 10~~ 4.1~10~~ 1.7.100

4 6.1~10~~ 4.0~10~~ 1.5~i0~ 8.3•i0~~ 9.4~10~~ 1.3.100

• 5 2.4.iO~~ 1.3~1O~~ 3.3.10
_2 

1.5.10 2 g.g
~~o

-
~ 2.7.101

6 ~~~~~~ 7.2~i0~~ 1.9.i0~~ 8.9~i0~~ 2.1•10~ 1.8.100

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ -~~~
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The coefficients confirm our conclusions about the sensitivity

• of the problem to perturbations in x1 and x6. For example, the

coefficient y 1~/ 8 1 is 34. If we consider perturbations introduced by

round ing the elemen ts of x6 in the s-th place beyond the decimal , then

the maximum such perturbation is *5~i0~~. If follows that

~~6 
- ~ 2O 10~ hence

I~i — ~ 34~20.i0~

To be sure of one figure of accura cy in 
~~~
, we must have 34~20~10~ < .1

or s ~ 4. The corresponding perturbation of *5~10 years amoun ts to

about *4.4 hours. Although this is a worst case analysis , it reflects

the extreme sensitivity of to perturbations in x6; a probabistic

analysis would give only slightly less dramatic results. The sensitivity

coefficients also show that 8i and 85 are quite sensitive to pertur-

bations in x1. 
-

We must insert a word of caution here. The results of the last

three sections all agree in condemning the variable x6 as a troub le
t maker , and to a lesser extent the variable x1. It is tempting to con-

clude that all will be wel l if we exclude x5 and x1 from the model .

However, the sensitivity of the coefficients to x1 and x6 is a func-

• tion of the entire model . There is no reason to expect that either

or x1 cannot behave themselves In a reduced model . The techniques we

have described in this paper are designed to detect trouble, not to rem-

edy It, and we discourage their naive application to the variabl e selec-

tion problem.

~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
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6. LimItations of a perturbation Index.
I , The first order perturbation theory of the last section is sharp

in proportion as the variance is small. A different approach would fix

the var iance of the errors and inves tigate what hap pens as n becomes

large. This case has been analyzed in ti~ and l~23 . In this section

we shall be concerned with how large n must be for the analyses to be

appl icable.

The basic results are derived as follows. We begin with a sequence

of regression problems with ful l rank nxp matrices (n = 1,2,...)

and observation vectors y
~ 

(n = 1,2,...p). The coefficient vectors b~

are given by

b~ = (x~
xn)~
’x
~,Yn

We suppose further that there is a limit problem in the sense that there

is a positive definite matrix A , a p-vector c, and a scalar such

that

im n f l
(6.1) i Tl im n  Xn.Yn c ,

n->oo

and

(6.2) l i r n n~~ ~ 
2 

— 
2

It follows that

l im b — A 1c b.
n->x n

~ ~~~~
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Now su ppose that we are actuall y given the matrices

where the elements of En are assumed to be uncorrelated with mean zero

and common var ia nce ~2• The coefficient vector obtained by working with

instead of x~ is given by

* T -1b~ =

(6.3)
= [n

S
~
1(X~X~ + X~E~ + E~X~ + E

~
E
~)1~~ 

n~~(X~y~ + E~y~)

The limits in probability of the terms in the right hand side of

(6.3) can easily be evaluated. From the assumptions on En we have

immediately that

p1 ir n n4(E~E~) = ~
2j

Next, from (6.1) it follows that If ~~~ den otes the i-th column of

X~, then

(n)1 2
i•, O X . , -  u
~um ________

~~~~~~~~~~~ 

— a~~.

Hence n 1”2X,~ is bounded and

T
p l im X~E1, 

=n->~ n

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ -~~~~~~~~~
• - ,  ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- •
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Finall y, from (6.2) it follows that n~~’
12y~ Is bounded and

E y 
= 0.

Hence

p l im b~ = (A + a2I~~
1c.

n->cx,

Equation (6.5) shows clearly that plim bn di ffers from the

true solution b by quantities that depend on the variance of E. We

may obtain specifi c bounds for this difference by applying results from

standard matrix perturbation theory (e.g. see 16~ ). Specifical ly , if

(6.6) a2i~ A
1I1 < 1

then (A + a21) Is nonsingular and

(6 7) 
tib — plim ~~ < 

a2llA~~II
II b II — 

1 — a2 A 1I1

Since trace(A4) ~ IIA~~II , we may replace the condition (6.6) by

a2trace(A) < 1

and the bound (6.7) by

lib - plim bn~ a2trace(A~~)(6.8) Ib~ 1 - a2trace(A4)

~~~i
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The right hand side of (6.7) or (6.8) is a relative error in

the vector ~. If it Is of order 10 ~~, then the largest components of

pl im &~. will be In error in about their s-th digit. The bounds may

then be interpretated as saying that if either a2ilA4lI or

a2trace (A~~) is near one, the pl im of 6,~ 
may di ffer entirely from b.

For th is reason , BRB call a2trace (A4) the perturbation index for the

problem and recommend that it be monitored to determine the sens iti vity

of the problem to errors in the vari ables .

To compute the perturbation index for the Longley data set, we

approximate A X
~
Xa/i6~ 

Now

trace(x
~
Xa)

’ = + 4+...+ ±‘P1 312 “6

where the are the singular values displ ayed in (3.4). Thus

trace(A~~) 36.8 
-

For uniform errors in the first unreported figure, we have a2 = 1/i2,

• so that the perturbation Index is about three, wh ich gives ample warning

of trouble.

However, if we consider errors in the second unreported figure,

we have a2 = 1/1200, and hence the perturbation index Is about 0.03, a

value which promises reasonable accuracy in plim 
~~
. On the other hand

the sensitivity coefficients suggest that the relative error In the co-

efficient due to perturbations of this kind in x6 will be of order

~~~ 

•

~~

-

i ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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of magnitude

1 
~ .98

Thus we can expect no accuracy in 81~ 
In spite of the small  perturbation

Index.

The cause of the difficulty is that n must be very large for

to approximate its plim with any degree of certainty. Returnina

to (6.3), we see that replacing the matr ix n~~(XTE + ETX ) by its plimn n  n n
of zero can only be justified if it is small in probability compared with

the plim of fl
~
’E
~
En~ 

In particular , the var iance of a diagonal elemen t

of fl
~
1(X

~
En + E~X~) is

E [(x~
n)Te~n ))2J = ~~ 

igx .i”~
gi
~ 

2 
all .

This variance must be small compared wIth the square of the corresponding

diagonal element of plim n4E~E~ which is a4. Hence n must at least

satisfy

4a2a11 a4

or -

(6.9) y~

-4

‘-7--

~

-

~

-

~

:- -
-

~~ ~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~

_
-

~~~~~

- 

• 7 ~~~
-
~ ~~~ ~~~~~~~~ 

-
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The number a/~lijj is a measure of the relative size of the

perturbations in the i-th column (if the data has been adjusted, ~~~~~

is approximately the standard deviation of the elements of the i-th

column). For example, i f the data is accurate to three fI gures , then

a/çi~ io-
~ and from (6.9) it follows that n must be at least

four million before the analysis leading to the perturbatIon index is to

be trusted. If we are concerned with rounding errors on , say, a computer

carrying eight decimal di gits , then a/-ji~ io 8 and n must be in

the quad n il l ions.

As far as the Uongley data is concerned, the largest standard

deviation occurs for the variable x2 and is about 1O5. Taking a2=i/12,-

we must have
V

t n > 4. 12.1010 
= 4.8~ 10

11,

a crIterion which the sixteen observations in the Longley data set fall

short of satisfying.

7. Conclusions.

Although we have confined our attention to the Longley data set

in this paper, the techniques that we have used are quite general. If

one can estimate the sizes of the errors in the variables, then the singu-

h r  value decomposition provides a way of seeing If they can have disas-

terous effects (we again stress the need for proper scaling of X). The

QR decomposition allows one to search for particularly offensive columns.

1:
-i~ ~ ~~~~~~~~ ~~~~ ~~~~~~~~~ j :~~- • ~~~~~~~~~~~~

‘ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Perhaps most useful of all are the sensitivity coefficients. Being
1.

derived from a linearization of the problem, they are not valid for

large errors; however, if a problem is locall y sens iti ve, then lange

errors are unl ikely to correct the di fficulty. We add that efficient

software for Implementing these techniques exists, and that , properly

done, none of them will cause an order of magnitude change in the costs
- 

of computation.

As regards the perturbation index , we recommend that its use be

eschewed. Al though a perturbation i ndex near to or greater than one is

certainly a sign of trouble, it can be misleadingly small. Moreover, it

measures effects that, in most practical circumstances, can be seen onl y

when the sample size is astronomically large.

I

~~~~~~~~~ ~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
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